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Outline

1. Brief overview of Mu2e and physics motivation

2. Mu2e straw tracker design

3. Tracker Prototype low level measurements

4. Simulating the tracker

5. Comparing resolution + efficiency from prototype data and

simulation

See upcoming talk by Tomonari Miyashita for more

details on the experiment!
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Charged Lepton Flavor Violation

• Mu2e will search for neutrinoless conversion of a muon to an

electron in a nuclear environment:

µ−
N → e

−
N

• This would violate charged lepton flavor, something that

has never been seen before

• Any detection of charged lepton flavor violation would be an

unambiguous sign of new physics! (SM contribution is

< 10−50)

• Mu2e goal is a 104 improvement!
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The Mu2e Experiment at Fermilab

• Stop 1018 muons on Aluminum

• Conversion produces monoenergetic 105 MeV electrons

• Main background is decay-in-orbit electrons

• Only distinguishable by momentum, want high precision

measurement that can handle high rate
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The Straw Tracker Detector

• Cylindrical straw tracker operating in uniform field
• Tracker is in vacuum

• Measurement is multiple scattering dominated

• Entire detector much less than one radiation length of material
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Tracker Configuration

• 18 stations, each containing 12x 120◦ panels for

stereo measurement

• Blind to DIO electron momentum peak and

beam flash

• Expected resolution better than 200 keV/c
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The Straw Tracker Detector

• ∼21,000 low mass straw tubes in vacuum

• 5mm diameter, 0.5-1.2m long

• 15µm mylar wall, 25µm tungsten wire

• 1 atm of 80/20 Ar:CO2 , wire at 1425V
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What are we measuring

• Individual threshold crossings digitized in time (TDC)

• Drift time → radial resolution ∼200 µm

• Straws are instrumented on both sides

• Time division → longitudinal resolution ∼4 cm

• Falling edge digitized for Time over threshold

• Measure of path length / radius independent of t0

• ADC measures pulse waveform for background rejection

7 / 23



Tracker Electronics
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Tracker Electronics
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Tracker FPGAs and Firmware

• Most of functionality in FPGAs - highly configurable
• Have already taken advantage to add new features (Time over

threshold)

• Originally had Altera FPGAs, now using Microsemi SmartFusion2

for radiation tolerance

• 2x Digi FPGAs that digitize 48 channels each
• Separate TDCs for each end of straw

• Continous readout of summed ADC waveform at 50 MHz

• Data buffering, DAQ communication, tracker slow controls in

ROC FPGA
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Firmware TDC Design

• Need ∼4cm resolution longitudinally along straw
• Near speed of light signal → <100ps time resolution

• Achieve resolution in firmware while minimizing resource
usage

• Initial design based on wave-union design by Jinyuan Wu

• Delay chain for sub-clock tick precision

• Average multiple chains to subdivide large delays

• Auto calibration of bin widths

1 delay chain 3 delay chains 8 delay chains
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Firmware Design

FPGA resource usage for 48 channel design

• Have managed to implement design that fits all 48 channels in

a single chip
• Learning process dealing with Microsemi FPGAs

• Architecture changes from Altera version

• Much smaller community, support resources

• Difficulties with timing constraints - manual placement of delay

chains and ADC interface

• Several hour compilation time for full design

• Demonstrated readout chain from digitizing FPGAs through

to DAQ computer over SERDES 11 / 23



An 8-straw tracker prototype for testing and performance mea-

surements

• Portable self-contained setup
• Cross talk → proton beam from 88” cyclotron at Berkeley Lab

• Radiation sensitivity → UC Berkeley High Flux Neutron Source

• Straw and electronics parameters → radioactive sources

• Efficiency/resolution → cosmic rays

• Read out over USB serial using custom DAQ
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Sources used to measure gain, energy resolution, time division,

simulation tuned to results
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• Gas gain by measuring current

with 55Fe
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Simulation of the straw tracker response

• Detailed Geant4 simulation of full detector

• Custom code takes energy deposition in each straw and

models physics and electronics response
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Simulation of the straw tracker response

Simulation of waveform threshold crossing at each end of straw
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• Each ion cluster modelled individually, including drift, wire

propagation, and electronics response
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Simulation of the electronics response

Input pulse shape → Apply electronics response
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• Use unshaped waveforms from source at different distances to

model attenuation, dispersion
• Fit for transfer function describing preamp and integrator
response

• Model includes saturation effects, pulse shape distortion

• Important for accurately determining proton discrimination,

modelling pileup
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Reconstructing track position for performance measurements

• Use PMT trigger and ATLAS FEI4 pixel
detectors to allow precise reconstruction
of cosmic ray tracks

• MIPs similar to conversion electron signal

• Allow resolution and efficiency

measurements
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Reconstructing track position for performance measurements
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• ATLAS FEI4 detectors measure track position
• 2.0x1.9cm chips, 250x50µm pixels

• PMT trigger gives t0 for drift time measurement
• ∼600ps time resolution

• Reconstruct relative position and timing of pixels, PMTs,

straws, wires with maximum likelihood fit
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Transverse resolution
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G4 + Straw Simulation
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• Agrees with simulation tuned to low level

parameters

• Model and simulation include full DOCA
dependence of resolution

• gaussian smearing × exponential with constant τ

• τ encodes effect of cluster statistics
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Transverse resolution
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0.0 < DOCA < 0.5
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• Agrees with simulation tuned to low level

parameters

• Model and simulation include full DOCA
dependence of resolution

• gaussian smearing × exponential with constant τ

• τ encodes effect of cluster statistics
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Longitudinal resolution and efficiency
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 1.422± = 43.371 σ

 1.277±mean = 0.653 

 1.245± = 41.733 σ

 1.308±mean = 2.232 

• Efficiency measured at many voltages/thresholds to determine

optimal running conditions
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Time over threshold

• With just hit time measurement, require t0 estimate from
track reconstruction before drift time can be determined

• Time over threshold allows a measure of path length (and thus

radial distance) independent of t0

• Implemented in firmware, being added to reconstruction
• Simulation agrees well with data

• Shows predictive power of detailed model
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Track Resolution
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• Sensitivity studies now include results of simulation tuned to

prototype measurements

• Track resolution depends on hit level resolution and efficiency,

as well as reconstruction techniques
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Conclusion

• Mu2e will search for CLFV with greatly improved sensitivity

• Straw tracker provides a precise momentum measurement,

made possible by timing and waveform measurements from

the straws

• 8-straw prototype was used to tune detailed simulation of

straw physics and electronics

• Hit level performance proven with prototype

• Momentum resolution will allow us to reach our sensitivity

goals!
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